Revision Checklist: GCSE AQA Combined Science: Trilogy (Higher Tier) | | 1. CELL
BIOLOGY | Subject
Knowledge
(tick as | Practice Questions (tick as | |----|----------------------|----------------------------------|-----------------------------| | | | appropriate) | appropriate) | | a. | Eukaryotes & | | | | | prokaryotes | | | | b. | Animal & plant cells | | | | c. | Cell specialisation | | | | d. | Microscopy | | | | e. | The cell cycle | | | | f. | Stem cells | | | | g. | Diffusion | | | | h. | Exchange surfaces | | | | i. | Osmosis | | | | j. | Active transport | | | | | 2. ORGANISATION | <u>Knowledge</u> | <u>Practice</u> | |----|----------------------------------|------------------|-----------------| | a. | Cells, tissues, organs & systems | | | | b. | Enzymes | | | | c. | Human digestive system | | | | d. | The lungs | | | | e. | The heart | | | | f. | Blood vessels | | | | g. | Blood | | | | h. | Coronary heart disease | | | | i. | Health & disease | | | | j. | Risk factors for non- | | | | | communicable diseases | | | | k. | Cancer | | | | 1. | Plant tissues | | | | m. | Transpiration & | | | | | translocation | | | | n. | Adaptations of plant cells | | | | 0. | Rate of transpiration | | | | | 3. INFECTION & | Knowledge | <u>Practice</u> | |----|---------------------------|-----------|-----------------| | | RESPONSE | | | | a. | Communicable diseases | | | | b. | Viral diseases | | | | c. | Bacterial diseases | | | | d. | Fungal diseases | | | | e. | Protist diseases | | | | f. | Human defence systems | | | | g. | Vaccination | | | | h. | Antibiotics & painkillers | | | | i. | Discovery of drugs | | | | j. | Drug tests & trials | | | | | 4. BIOENERGETICS | Knowledge | <u>Practice</u> | |----|------------------------|-----------|-----------------| | a. | Photosynthesis | | | | b. | Rate of photosynthesis | | | | c. | Uses of glucose | | | | d. | Aerobic & anaerobic | | | | | respiration | | | | e. | Body's response to | | | | | exercise | | | | f. | Metabolism | | | | | 5. HOMEOSTASIS & | Knowledge | <u>Practice</u> | |----|--------------------------|-----------|-----------------| | | RESPONSE | | | | a. | Homeostasis | | | | b. | The reflex arc | | | | c. | The endocrine system | | | | d. | Blood glucose control | | | | e. | Diabetes | | | | f. | Hormones in reproduction | | | | g. | The menstrual cycle | | | | h. | Contraception | | | | i. | Treating infertility | | | | j. | Thyroxine & adrenaline | | | | | 6. INHERITANCE, | Knowledge | <u>Practice</u> | |----|-------------------------|-----------|-----------------| | | VARIATION & | | | | | EVOLUTION | | | | a. | Sexual & asexual | | | | | reproduction | | | | b. | Meiosis | | | | c. | DNA structure | | | | d. | The genome | | | | e. | Alleles & inheritance | | | | f. | Inherited disorders | | | | g. | Sex determination | | | | h. | Variation | | | | i. | Selective breeding | | | | j. | Genetic engineering | | | | k. | Cloning | | | | I. | The theory of evolution | | | | m. | Speciation | | | | n. | Fossils | | | | 0. | Extinction | | | | p. | Antibiotic resistant | | | | | bacteria | | | | q. | Classification of | | | | | organisms | | | BIOLOGY | | • | | | | |---|---|---|---|---| | | | | | | | (| C | | | 3 | | | | | | | | | | | | | | (| | | |) | | | | | | | | | C | 3 | C | | | | | | | | | | 7. ECOLOGY | Knowledge | <u>Practice</u> | |----|--------------------------|-----------|-----------------| | a. | Communities & | | | | | interdependence | | | | b. | Abiotic & biotic factors | | | | c. | Adaptations | | | | d. | Food chains & webs | | | | e. | Predator-prey cycles | | | | f. | Carbon & water cycle | | | | g. | Biodiversity | | | | h. | Waste management | | | | i. | Land use & deforestation | | | | j. | Global warming | | | | k. | Maintaining biodiversity | | | | | 8. ATOMIC | Knowledge | <u>Practice</u> | |----|----------------------|-----------|-----------------| | | STRUCTURE & | | | | | THE PERIODIC | | | | | TABLE TABLE | | | | а. | Elements, | | | | | compounds & | | | | | mixtures | | | | b. | Separating mixtures | | | | c. | Development of | | | | | atomic model | | | | d. | Mass & atomic | | | | | number | | | | e. | Relative atomic mass | | | | f. | Electronic structure | | | | g. | Groups & periods | | | | h. | Development of | | | | | periodic table | | | | i. | Metals & non-metals | | | | j. | Group 0 elements | | | | k. | Group 1 elements | | | | I. | Group 7 elements | | | | | O DONDING | Knowledge | Practice | |----|---------------------------|-----------|----------| | | 9. BONDING, | Knowicuge | Tractice | | | STRUCTURE & THE | | | | | PROPERTIES OF | | | | | MATTER | | | | a. | Ionic bonding | | | | b. | Covalent bonding | | | | c. | Dot & cross diagrams | | | | d. | Metallic bonding | | | | e. | States of matter | | | | f. | Properties of ionic | | | | | compounds | | | | g. | Properties of small | | | | | molecules | | | | h. | Polymers & giant covalent | | | | | structures | | | | i. | Properties of metals | | | | j. | Alloys | | | | k. | Diamond & graphite | | | | I. | Graphene & fullerenes | | | | | 10. QUANTITATIVE | Knowledge | <u>Practice</u> | |----|--------------------------|-----------|-----------------| | | CHEMISTRY | | | | a. | Balancing chemical | | | | | equations | | | | b. | Conservation of mass | | | | c. | Relative formula mass | | | | d. | Estimating uncertainty | | | | e. | Moles | | | | f. | Using moles to calculate | | | | | masses | | | | g. | Using moles to balance | | | | | equations | | | | h. | Limiting reactants | | | | i. | Concentration | | | | | 11. CHEMICAL | Knowledge | <u>Practice</u> | |----|---------------------------|-----------|-----------------| | | CHANGES | | | | a. | The reactivity series | | | | b. | Reduction & oxidation | | | | c. | Extracting metals by | | | | | reduction | | | | d. | Ionic & half equations | | | | e. | Reacting acids with | | | | | metals | | | | f. | Neutralisation of acids & | | | | | naming salts | | | | g. | рН | | | | h. | Strong & weak acids | | | | i. | Electrolysis of molten | | | | | ionic compounds | | | | j. | Electrolysis of aqueous | | | | | solutions | | | | | 1 | 2. ENERGY | | <u>Knowledge</u> | <u>Practice</u> | |----|---------|-----------------|-------|------------------|-----------------| | | | CHANGES | | | | | a. | ı | Exothermic & | | | | | | endo | thermic react | ions | | | | b. | Re | eaction profile | s | | | | c. | Calcula | ating energy c | hange | | | | | | of reactions | | | | | | 13. THE RATE & | Knowledge | <u>Practice</u> | |----|----------------------------------|-----------|-----------------| | | EXTENT OF | | | | | CHEMICAL CHANGE | | | | a. | Calculating rate of reaction | | | | b. | Factors affecting rate of | | | | c. | reaction Collision theory & | | | | - | activation energy | | | | d. | Catalysts | | | | e. | Reversible reactions | | | | f. | Le Chatelier's principle | | | | g. | Factors which affect equilibrium | | | | | 14. ORGANIC | <u>Knowledge</u> | <u>Practice</u> | |----|----------------------------|------------------|-----------------| | | CHEMISTRY | | | | a. | Crude oil | | | | b. | Alkanes | | | | c. | Fractional distillation | | | | d. | Properties of hydrocarbons | | | | e. | Combustion reactions | | | | f. | Alkenes | | | | g. | Addition reactions | | | | h. | Cracking | | | | | 15. CHEMICAL | <u>Knowledge</u> | <u>Practice</u> | |----|------------------------|------------------|-----------------| | | ANALYSIS | | | | a. | Purity | | | | b. | Formulations | | | | c. | Paper chromatography | | | | d. | Tests for common gases | | | | | 16. CHEMISTRY OF | Knowledge | <u>Practice</u> | |----|------------------------|-----------|-----------------| | | THE ATMOSPHERE | | | | a. | Composition of Earth's | | | | | atmosphere | | | | b. | Evolution of Earth's | | | | | atmosphere | | | | c. | The greenhouse effect | | | | d. | Human activity & | | | | | greenhouse gases | | | | e. | Global climate change | | | | f. | The carbon footprint | | | | g. | Atmospheric pollutants | | | | | 17. USING | Knowledge | <u>Practice</u> | |----|-------------------------|-----------|-----------------| | | RESOURCES | | | | a. | Using Earth's resources | | | | b. | Potable water | | | | c. | Waste water treatment | | | | d. | Low-grade copper ores | | | | e. | Life cycle assessment | | | | f. | Recycling | | | ## The Periodic Table of Elements | ine | r ein | ouic | Iduli | 6 01 | ctem | enca | | | | | | | | | | | | |-----------------------------|----------------------------|---|--------------------------|-------------------------------|--------------------|------------------------------|--------------------|--------------------------|-----------------------------|------------------|--------------------|--------------------------|--------------------|--------------------|--------------------------|-------------------|---------------------------| | 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | . 0 | | | | | | Key | | | H | | | | | | 40000 | | | | He
helon
2 | | 7
Li
imum
3 | Be
terplion
4 | | ato | mic syn
mic syn
(proton | | | | * . | | | | B
book
5 | C
unton
6 | N
N | 16
0
(rogen
8 | F
Serve
9 | Ne
ne
ne
10 | | Na
Na
sostan
11 | 24
Mg | | | | | | | | | | | 27
Al
13 | 28
Si
14 | 31
P
15 | 32
8
16 | 35.5
CI
17 | 40
Ar
18 | | 39
K | 40
Ca
20 | 45
Sc
=================================== | 48
Ti | 51
V
23 | 52
Cr
24 | 55
Mn
25 | 56
Fe
26 | 59
Co | 59
Ni
28 | 63.5
Cu
29 | 65
Zn
30 | Ga
gatun
31 | 73
Ge | 75
As
33 | 79
Se
34 | 80
Br
35 | 84
Kr
truster
36 | | 85
Rb | 88
Sr
38 | 89
Y
yaum
39 | 91
Zr
#00min
40 | 93
Nb
mbum
41 | 96
Mo
42 | [97]
Te | 101
Ru | 103
Rh
nosum
45 | 106
Pd
petedium
46 | 108
Ag
47 | 112
Cd
48 | 115
In
Helum
49 | 119
Sn
50 | 122
Sb
51 | 128
Te
wuw.m
52 | 127
1
53 | 131
Xe
54 | | 133
Cs
55 | 137
Ba
56 | 139
La*
57 | 178
Hf | 181
Ta
73 | 184
W | 186
Re
75 | 190
Os
76 | 192
le
77 | 195
Pt
78 | 197
Au
79 | 201
Hg
80 | 204
TI
81 | 207
Pb | 209
Bi
83 | [209]
Po
84 | [210]
At
85 | [222]
Rn
86 | | [223]
Fr
tandon
87 | [226]
Ra
ratus
88 | [227]
Ac* | [267]
Rf
104 | [270]
Db
statem
105 | [269]
Sg
106 | [270]
Bh
tutous
107 | [270]
Hs
108 | [278]
Mt | [281]
Ds
110 | [281]
Rg | [285]
Cn
112 | [286]
Nh | (289)
FI
114 | [289]
Mc
115 | [293]
Lv
116 | [293]
Ts | (294)
Og
118 | ^{*} The Lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omitted. | | 18. ENERGY | <u>Knowledge</u> | <u>Practice</u> | |----|-------------------------|------------------|-----------------| | a. | Energy stores | | | | b. | Changes in energy | | | | c. | Kinetic energy | | | | d. | Gravitational & elastic | | | | | potential energy | | | | e. | Specific heat capacity | | | | f. | Power & work done | | | | g. | Conduction | | | | h. | Unwanted energy | | | | | transfers | | | | i. | Efficiency | | | | j. | Energy resources | | | | | (renewable & non- | | | | | renewable) | | | | k. | Energy resources | | | | | (environmental | | | | | impact) | | | | | 19. ELECTRICITY | Knowledge | <u>Practice</u> | |----|--|-----------|-----------------| | a. | Circuit diagram symbols | | | | b. | Charge & current | | | | c. | Current, resistance & potential difference | | | | d. | I-V characteristic curves | | | | e. | LDR & thermistor | | | | f. | Series & parallel circuits | | | | g. | D.C. & A.C. | | | | h. | Mains electricity | | | | i. | Power in circuits | | | | j. | Energy transfers in
electrical appliances | | | | k. | The national grid | | | | I. | Role of transformers | | | | | 20. PARTICLE MODEL | <u>Knowledge</u> | <u>Practice</u> | |----|--------------------------------|------------------|-----------------| | | OF MATTER | | | | a. | Density | | | | b. | Changes of state | | | | c. | Internal energy | | | | d. | Specific heat capacity (again) | | | | e. | Specific latent heat | | | | f. | Particle motion in gases | | | | | 21. ATOMIC | Knowledge | <u>Practice</u> | |----|---------------------------------------|-----------|-----------------| | | STRUCTURE | | | | a. | Structure of an atom | | | | b. | Mass number, atomic number & isotopes | | | | c. | Development of atomic model | | | | d. | Radioactive decay | | | | e. | Properties of nuclear | | |----|-----------------------|--| | | radiation | | | f. | Nuclear equations | | | g. | Half life | | | h. | Contamination & | | | | irradiation | | | | 22. FORCES | <u>Knowledge</u> | <u>Practice</u> | |----|---------------------------|------------------|-----------------| | a. | Scalars & vectors | | | | b. | Contact & non-contact | | | | | forces | | | | c. | Gravity & weight | | | | d. | Resultant forces | | | | e. | Vector diagrams | | | | f. | Work done | | | | g. | Springs & elasticity | | | | h. | Distance & displacement | | | | i. | Speed & velocity | | | | j. | Distance-time graphs | | | | k. | Acceleration | | | | I. | Velocity-time graphs | | | | m. | Terminal velocity | | | | n. | Newton's first law | | | | о. | Newton's second law & | | | | | inertia | | | | p. | Newton's third law | | | | q. | Stopping distance & | | | | | reaction time | | | | r. | Factors affecting braking | | | | | distance | | | | s. | Momentum | | | | | 23. WAVES | Knowledge | <u>Practice</u> | |----|---------------------------|-----------|-----------------| | a. | Transverse & longitudinal | | | | | waves | | | | b. | Properties of waves | | | | c. | Refraction | | | | d. | Ray diagrams (refraction) | | | | e. | Waves for detection & | | | | | exploration | | | | f. | Electromagnetic (EM) | | | | | spectrum | | | | g. | Radio waves | | | | h. | Risks of EM radiation | | | | i. | Uses of EM waves | | | | | 24. MAGNETISM & | <u>Knowledge</u> | <u>Practice</u> | |----|--------------------------|------------------|-----------------| | | ELECTRO- | | | | | MAGNETISM | | | | a. | Bar magnets | | | | b. | Magnetic fields | | | | c. | Electromagnets | | | | d. | The motor effect & | | | | | Fleming's left-hand rule | | | | e. | Electric motors | | | | EQUATIONS (not given in exam) | | |--|--| | Weight = mass x gravitational field strength | W = m g | | Work done = force x distance | W = F s | | Force (applied to a spring) = spring constant x | F = k e | | extension | | | Distance = speed x time | s = v t | | Acceleration = $\frac{\text{change in velocity}}{\text{time}}$ | $a = \frac{\Delta v}{t}$ | | Resultant force = mass x acceleration | F = m a | | Momentum = mass x velocity | p = m v | | Kinetic energy = 0.5 x mass x (speed) ² | $E_K = \frac{1}{2} \text{ m } \text{ v}^2$ | | Gravitational potential energy = mass x | $E_P = m g h$ | | gravitational field strength x height | | | Power = energy transferred time | $P = \frac{E}{t}$ $P = \frac{W}{t}$ | | Power = work done time | $P = \frac{W}{t}$ | | Efficiency = useful energy out total energy in | | | Efficiency = useful power out total power in | | | Wave speed = frequency x wavelength | v = f λ | | Charge = current x time | Q = I t | | Potential difference = current x resistance | V = I R | | Power = potential difference x current | P = V I | | Power = (current) ² x resistance | $P = I^2 R$ | | Energy transferred = charge x potential | E = Q V | | difference | | | Density = mass volume | $\rho = \frac{m}{V}$ | | | PRACTICALS | <u>Knowledge</u> | |--------------|--|------------------| | | RP 1: "Make use of a light microscope to observe, draw and label plant and | | | | animal cells." | | | | RP 2: "Investigate the effect of different | | | | concentrations of salt or sugar solutions | | | | on the mass of plant tissue." | | | | RP3: "Make use of reagents to test for | | | | the presence of different carbohydrates, | | | | lipids and proteins." | | | | RP 4: "Investigate the effect of pH on the | | | | rate of reaction of amylase." | | | | IP 5: "Investigate the effect of light intensity on the rate of photosynthesis | | | | of an aquatic plant." | | | | RP 6: "Investigate the effect of a specific | | | | factor on human reaction time." | | | | RP 7: "Use sampling techniques to | | | | investigate the effect of a specific factor | | | S | on the distribution of a species in a | | | | habitat." | | | | RP 8: "Prepare a pure, dry sample of a | | | | soluble salt from an insoluble oxide or | | | 1 | carbonate." | | | 7 | RP 9: "Investigate the electrolysis of | | | MARKET PARTY | aqueous solutions (a hypothesis must | | | 0 | be formed and developed)." | | | 1000 | RP 10: "Investigate factors affecting | | | | temperature change when reacting | | | 77 | solutions together." | | | _ | RP 11a: "Investigate how concentration | | | | affects the rate of reaction by measuring | | | | the volume of gas produced (a | | | 0 | hypothesis must be formed and | | | | developed)." | | | 7 | RP 11b: "Investigate how concentration | | | 7 | affects the rate of reaction by observing | | | | a colour change (a hypothesis must be | | | 00 | formed and developed)." RP 12: "Use paper chromatography to | | | | separate coloured substances and | | | 0 | determine R _f values." | | | | RP 13: "Identify pH and amount of | | | | dissolved solids in water samples from | | | | different sources, and use distillation to | | | | purify them." | | | | RP 14: "An investigation to determine | | | | the specific heat capacity of one or more | | | | materials." | | | | RP L5a: "Investigate how the length of a | | | | wire at constant temperature affects the | | | | resistance of electrical circuits." | | | | RP 15b: "Investigate how combinations | | | | of resistors in series and parallel affect | | | | the resistance of electrical circuits." | | | | RP 16: "Use circuit diagrams to | | | | investigate the I-V characteristics of a | | | | 20.004 | | | filament lamp, a diode and a resistor at | | |--|--| | constant temperature." | | | RP 17: "Determine the densities of | | | regular and irregular solid objects and | | | liquids." | | | RP 18: "Investigate the relationship | | | between force and extension of a | | | spring." | | | RP 19: "Investigate separately how | | | varying the force and mass of an object | | | affect its acceleration." | | | RP 20: "Measure the frequency, | | | wavelength and speed of waves in a | | | ripple tank, and waves in a solid." | | | RP 21: "Investigate how the amount of | | | infrared radiation absorbed and | | | radiated depends on the type of | | | surface." | | | ASSESSMENTS | <u>Duration</u> | <u>Marks</u> | <u>Topics</u> | |-------------------|-----------------|--------------|---------------| | Biology Paper 1 | 1 hour | 70 | Topics | | | 15 min | marks | 1-4 | | Biology Paper 2 | 1 hour | 70 | Topics | | | 15 min | marks | 5 - 7 | | Chemistry Paper 1 | 1 hour | 70 | Topics | | | 15 min | marks | 8 – 12 | | Chemistry Paper 2 | 1 hour | 70 | Topics | | | 15 min | marks | 13 - 17 | | Physics Paper 1 | 1 hour | 70 | Topics | | | 15 min | marks | 18 – 21 | | Physics Paper 2 | 1 hour | 70 | Topics | | | 15 min | marks | 22 - 24 |